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1 Introduction

The anti-de Sitter/conformal field theory (AdS/CFT) correspondence arose out of an un-

derstanding of N = 4 supersymmetric (SUSY) Yang-Mills theories using D-brane construc-

tions in string theory [1]. It has since been extended to CFTs with less supersymmetry

and it is widely thought to extend even to non-SUSY CFTs. Most studies of the cor-

respondence have been performed using a non-SUSY formalism, making use of on-shell

component fields. However, for N = 1 SUSY CFTs the situation can be improved using a

formalism for discussing SUSY 5D theories (which correspond to 4D N = 2 SUSY) in terms

of 4D N = 1 superfields [2]. Thus it should be straightforward to study the AdS/CFT

correspondence for N = 1 SUSY CFTs keeping SUSY manifest throughout using off-shell

auxiliary fields. We find that, by employing this formalism, we are able to easily handle

some subtle points [3] concerning scalar operators with dimensions below 2, which is impor-

tant for studying cases where the CFT operators are close to being free fields. Moreover,

keeping supersymmetry explicit helps to clarify the relation between scalar and fermion

operator dimensions [4], and to show that formulas for the fermionic dimensions previously

calculated in the literature [5] are incomplete.

The paper is structured as follows. In section 2 we review supersymmetric AdS5

with hypermultiplets and the corresponding holographic boundary actions. In section 3

we discuss the CFT interpretation of these theories and extract the dimensions of CFT

operators corresponding to the bulk hypermultiplet. In section 4 we briefly describe how

to extend the analysis to vector multiplets, and finally summarize our conclusions.
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2 SUSY in AdS space: chiral hypermultiplets

We start reviewing how to write a supersymmetic action in AdS5 space. We will work with

the conformally flat metric:

ds2 =

(

R

z

)2
(

ηµνdx
µdxν − dz2

)

, (2.1)

and define the theory on an interval delimited by zUV and zIR. We will recover the

conformal limit by sending zIR → ∞ and zUV → 0. A 5D hypermultiplet consists of two

4D chiral superfields Φ and Φc. The bulk action can be written in 4D superspace as [6]:

S =

∫

d4x dz

{

∫

d4θ

(

R

z

)3

[Φ∗ Φ + Φc Φ∗
c ] +

+

∫

d2θ

(

R

z

)3 [

1

2
Φc ∂zΦ−

1

2
∂zΦc Φ +

c

z
Φc Φ

]

+ h.c.

}

, (2.2)

which is explicitly hermitian without boundary terms. Expanding in components, Φ =

{φ, χ, F} and Φc = {φc, ψ, Fc}, the action for the scalar (and auxiliary) components is:

Sscalar =

∫

d4x dz

(

R

z

)3 {

∂µφ
∗ ∂µφ+ ∂µφ

∗
c ∂

µφc + F ∗F + F ∗
c F + (2.3)

+

[

1

2
Fc ∂zφ−

1

2
∂zFc φ+

c

z
Fc φ+

1

2
φc ∂zF −

1

2
∂zφc F +

c

z
φc F + h.c.

]}

.

The scalars and F−components are coupled by derivatives along the extra dimension:

therefore, we need to solve the two coupled equations of motion (EOMs) with appropriate

boundary conditions, given by the minimization of the action, in the usual way.1 Varying

the action with respect to Fc we get:

(

R

z

)3 [

F ∗
c + ∂zφ−

(

3

2
− c

)

1

z
φ

]

δFc −
1

2

(

R

z

)3 [

δFc φ

]z=zIR

z=zUV

(2.4)

where the last term is a boundary contribution which arises through an integration by

parts. The bulk EOM is:

F ∗
c = −∂zφ+

(

3

2
− c

)

1

z
φ . (2.5)

We can now calculate the second EOM by varying the action with respect to φ∗:

∂µ∂
µφ+ ∂zF

∗
c −

(

3

2
+ c

)

1

z
F ∗

c = 0 . (2.6)

1The results in ref. [7] can be obtained if we assume an orbifold compactification and we integrate out

the auxiliary fields [6]. Here we want to be more general, and define the theory on an interval. In our

approach, the boundary terms in ref. [6, 7] are replaced by suitable boundary conditions.

– 2 –
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Using the EOM for Fc, eq. (2.5), we get

∂µ∂
µφ− ∂2

zφ+
3

z
∂zφ+

(

c2 + c− 15

4

)

1

z2
φ = 0 . (2.7)

The scalar field φ therefore has an effective bulk mass

m2R2 = c2 + c− 15/4. (2.8)

The solutions of this EOM are Bessel functions of order

νL ≡
√

4 +m2R2 =

∣

∣

∣

∣

c+
1

2

∣

∣

∣

∣

. (2.9)

The boundary conditions (BCs) are determined by setting to zero the boundary con-

tributions to the variation of the action. The variation with respect of the two fields Fc

and φ will generate the following two terms:

1

2

(

R

z

)3

[Fc δφ− δFc φ]

∣

∣

∣

∣

∣

z=zIR

z=zUV

. (2.10)

Thus we see that both boundary variations vanish with either of the two possible boundary

conditions:

φ = 0 or Fc = 0 = −∂5φ+

(

3

2
− c

)

1

z
φ . (2.11)

The second equation, Fc = 0, is equivalent to a BC for a localized scalar mass term and it

is the same as the mass term for φ found in [7]. If we want the BCs to be supersymmetric,

eqs. (2.11) correspond to either of the two chiral multiplets vanishing on the boundaries,

Φ = 0 or Φc = 0. Note also that the effective boundary mass for φ in eq. (2.11) is related

to the bulk mass by

3

2
− c =

{

2− νL for c > −1
2

2 + νL for c < −1
2

. (2.12)

We can repeat the same exercise for φc and F , finding:

F = ∂zφ
∗
c −

(

3

2
+ c

)

1

z
φ∗c , (2.13)

and an effective bulk mass for φc

m2
cR

2 = c2 − c− 15

4
, (2.14)

which determines the order of the Bessel functions in the solutions:

νR ≡
√

4 +m2
cR

2 =

∣

∣

∣

∣

c− 1

2

∣

∣

∣

∣

. (2.15)
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The effective localized mass for φc is

3

2
+ c =

{

2− νR for c < 1
2

2 + νR for c > 1
2

. (2.16)

The two chiral superfields are therefore related by taking c→ −c.
Regarding the fermionic sector, the situation is more straightforward, as they do not

mix with any auxiliary fields. The fermionic sector consists therefore of a 5D bulk fermion

with bulk mass mfR = c, thus the same analysis in [6, 7] can be done. The action can be

written in terms of components as

S =

∫

d5x

(

R

z

)4 (

−iχ̄σ̄µ∂µχ− iψσµ∂µψ̄ +
1

2
(ψ
←→
∂z χ− χ̄

←→
∂z ψ̄) +

c

z

(

ψχ+ χ̄ψ̄
)

)

, (2.17)

where
←→
∂z =

−→
∂z −

←−
∂z with the convention that the differential operators act only on the

spinors and not on the metric factors. Note that the fermionic component χ and ψ have

been rescaled by a factor
√

R/z to obtain the usual normalization [6]. We will perform

the same rescaling when writing a chiral multiplet in components; however it is a matter

of conventions and it does not play any important role in our discussion.

2.1 Explicit solutions

The bulk wave function solutions for fermions and scalars are:

χ(p, z) = χ4(p) z
5/2 (a JνL

(pz) + b YνL
(pz)) ≡ χ4(p) z

5/2 fL(pz) , (2.18)

φ(p, z) = φ4(p) z
2 fL(pz) , (2.19)

ψ(p, z) = ψ4(p) z
5/2 (a JνR

(pz) + b YνR
(pz)) = ψ4(p) z

5/2 fR(pz) , (2.20)

φc(p, z) = φc4(p) z
2 fR(pz) (2.21)

where p =
√

−∂µ∂µ, and the subscript “4” indicates 4 dimensional fields. Note that the

two 4D fermionic components are related by 4D Dirac equations:

− iσ̄µ∂µχ4 + pψ̄4 = 0 , and − iσµ∂µψ̄4 + pχ4 = 0 . (2.22)

Supersymmetry requires that the coefficients a and b are the same in all the solutions,

while their ratio is fixed by the BCs on the IR brane (or asymptotic behavior at large z in

the zIR → ∞). As an example, one can apply the BCs described above, and verify that

they indeed enforce supersymmetry. Let us check that imposing the BCs on the UV brane,

independently of a and b, leads to a supersymmetric spectrum. The first choice is:

Φ(zUV ) = 0⇒











χ(m, zUV ) = 0 ,

φ(m, zUV ) = 0 ,

F (m, zUV ) ∝
(

∂z − (3/2+c)
zUV

)

φc(m, zUV ) = 0 .

(2.23)

The first two obviously imply fL(m, zUV ) = 0. Regarding the third, it gives rise to the

same spectrum once we observe that, due to some properties of the Bessel functions:
(

∂z −
(

3

2
+ c

)

1

z

)

z2fR(p, z) = pz2fL(p, z) . (2.24)

– 4 –
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For the other choice, Φc(zUV ) = 0, we observe that, analogously

(

∂z −
(

3

2
− c

)

1

z

)

z2fL(p, z) = −pz2fR(p, z) , (2.25)

so that, in this case, the spectrum is given by fR(m, zUV ) = 0.

2.2 Holographic Lagrangian

In this section we want to compute the holographic action generated by the bulk solutions

sketched in the previous section [4, 8]. As usual, we need to fix the value of one of the

two superfields on the UV brane, i.e. either Φ(zUV ) = Φ0 or Φc(zUV ) = Φ0, where Φ0 will

play the role of the 4D superfield source in the holographic interpretation. The first choice,

Φ = Φ0, can be achieved by adding the UV boundary superpotential term

SUV = −
∫

d4x
1

2

(

R

zUV

)3 (
∫

d2θΦc(zUV )Φ0 + h.c.

)

. (2.26)

The variation of the scalar action on the UV brane is:

δSscalar UV = −1

2

(

R

zUV

)3 ∫

d4x [Fc δφ+ φc δF

+ δφc (F0 − F ) + δFc(φ0 − φ)]z=zUV
+ h.c., (2.27)

while the variation of the fermion action on the UV brane is given by [9]:

δSferm UV = −1

2

(

R

zUV

)4 ∫

d4x [ψ δχ+ δψ (χ0 − χ) ]z=zUV
+ h.c. (2.28)

Requiring the variation of action on the UV boundary to vanish thus gives the BCs:

χ(zUV ) = χ0 , φ(zUV ) = φ0 , F (zUV ) = F0 . (2.29)

Plugging the solutions of the EOMs back into the action, the bulk action vanishes due

to the fact that all the EOMs are first order differential equations in ∂z. Therefore the UV

boundary term is (2.26)

Sholo = SUV = −1

2

(

R

zUV

)3 ∫

d4x

[

R

zUV
ψ χ0 + Fc φ0 + φc F0

]

z=zUV

+ h.c. (2.30)

For the fermion fields, the normalizations of the bulk wave functions are fixed by the

BC in eq. (2.29)

χ(p, z) =

(

z

zUV

)5/2 fL(p z)

fL(p zUV )
χ0(p) , ψ̄(p, z) =

(

z

zUV

)5/2 fR(p z)

fL(p zUV )

pµσ̄
µ

p
χ0(p) . (2.31)

Therefore, the fermionic holographic action is:

Sholo[χ0] = −
∫

d4x

(

R

zUV

)4

χ̄0
fR(p zUV )

fL(p zUV )

pµσ̄
µ

p
χ0 . (2.32)

– 5 –
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For the scalar φ:

φ(p, z) =

(

z

zUV

)2 fL(p z)

fL(p zUV )
φ0(p) (2.33)

and, using the EOM for Fc in eq. (2.5),

Sholo[φ0] =

∫

d4x
1

2

(

R

zUV

)3 [

φ∗0

(

∂z −
(

3

2
− c

)

1

z

)

φ+ h.c.

]

z=zUV

= −
∫

d4x

(

R

zUV

)3

φ∗0 p
fR(p zUV )

fL(p zUV )
φ0 . (2.34)

For the scalar φc, from the BC

F (zUV ) = F0 =

(

∂z −
(

3

2
+ c

)

1

zUV

)

φc

∣

∣

∣

∣

z=zUV

(2.35)

it follows that

φc =
1

p

(

z

zUV

)2 fR(p z)

fL(p zUV )
F0 . (2.36)

The holographic action is therefore:

Sholo[F0] = −
∫

d4x

(

R

zUV

)3

F ∗
0

1

p

fR(p zUV )

fL(p zUV )
F0 . (2.37)

We can now summarize the boundary action:

Sholo = −
∫

d4x [φ∗0 Σφ φ0 + F ∗
0 ΣF F + χ∗

0 Σχ χ0] ; (2.38)

where the kinetic terms determined by

Σφ =

(

R

zUV

)3

p
fR

fL
, Σχ =

(

R

zUV

)4 pµσ̄
µ

p

fR

fL
, ΣF =

(

R

zUV

)3 1

p

fR

fL
. (2.39)

In the case Φc(zUV ) = Φ0, the UV boundary term is

SUV =

∫

d4x
1

2

(

R

zUV

)3 (
∫

d2θΦ0 Φ(zUV ) + h.c.

)

. (2.40)

For the kinetic terms, up to an overall sign, we find the same expressions as in eq. (2.39)

with L↔ R, i.e. c→ −c.

3 CFT interpretation

We now want to give the CFT interpretation of the holographic action of eq. (2.38). Since

we have two scalar fields φ and φc, our naive intuition (based on non-SUSY results where

there can be two different scaling dimensions for a given bulk field) would suggest that

– 6 –
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there are 4 possible scaling dimensions ds for the scalar sector of the CFT, which would be

related to the scalar bulk masses by [3]:

ds = 2± νL =

{

3/2 − c
5/2 + c

and ds = 2± νR =

{

3/2 + c

5/2 − c . (3.1)

Depending on the value of c, some of those solutions will not be acceptable as they violate

the unitarity bound ds > 1. However, as we will show in this section, not all of the

remaining CFTs can be supersymmetric.

In our formalism, where the auxiliary F-components are included, it is important to

correctly identify the propagators for the scalar and fermionic components of the CFT op-

erator. Consider a chiral superfield CFT operator ΦO with components {O,ΘO, FO}. The

supersymmetric coupling between source and operator is a superpotential term of the form:

∫

d2θ ΦO Φ0 = ΘO χ0 + FO φ0 +O F0 .

The correct interpretation is that the source F0 couples to the scalar component of the

CFT, O, so that the scalar correlator is

∆s(p) ≡< O(−p)O(p) >=
δ2Sholo

δF0(−p)δF0(p)
= −ΣF (p) . (3.2)

It is important to notice that it is the holographic action of the F -component, and not of

the scalar, that contains information about the scalar CFT correlator.

On the other hand, the FO component of the CFT supermultiplet couples with the

scalar source φ0, therefore:

∆F (p) ≡< FO(−p)FO(p) >=
δ2Sholo

δφ0(−p)δφ0(p)
= −Σφ(p) . (3.3)

For the fermion ΘO, as usual

∆f ≡< ΘO(−p)ΘO(p) >=
δ2Sholo

δχ0(−p)δχ0(p)
= −Σχ(p) . (3.4)

The kinetic functions are given in eq. (2.39), and are related to each other by:

∆F = p2∆s , ∆f = pµσ̄
µ ∆s ; (3.5)

those relations are enough to ensure the correct relations between the scaling dimensions

of the components of the supermultiplet, ds = df − 1/2 = dF − 1, and this is a nice check

that our interpretation is correct.

In order to extract the dimension of the chiral operator, we need to understand how the

2-point function in eq. (3.3) scales with the momentum p. It is a function of the product

pzUV : in the conformal limit zUV → 0, we can expand for small arguments pzUV ≪ 1. Note

that the 2-point function also depends on the ratio a/b, which is fixed by the asymptotic

conditions at zIR →∞ or by the BCs on the IR brane. In the former case, a/b is a number

– 7 –
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independent of the momentum. In the case of a finite IR brane, a/b does depend on p:

however we are interested in the conformal limit pzIR ≫ 1 where the a/b reduces to a ratio

of trigonometric functions and it does not have any scaling with p. To be more rigorous,

we should extract the scaling properties of the residual at the poles corresponding to the

KK tower of CFT bound states, however the conclusions would be the same.

Expanding the scalar propagator,2 for small pzUV :

∆s ∼ p−1a(p zUV )|c−1/2| + b(p zUV )−|c−1/2|

a(p zUV )|c+1/2| + b(p zUV )−|c+1/2|
+ . . .

∼ p|c+1/2|−|c−1/2|−1
(

1 +
a

b
(p zUV )2|c+1/2| − a

b
(p zUV )2|c−1/2| + . . .

)

(3.6)

For c > 1/2, we get:

∆s ∼
1

(zUV )2c−1
(1 + . . . ) +

a

b
(p)2c−1 + . . . (3.7)

where we have properly rescaled the correlator with powers of zUV . The dimension of the

scalar operator is therefore ds = 3/2 + c = 2 + νR > 2. However, in the conformal limit

zUV → 0, some of the local terms dominate. Those terms can be canceled by adding a local

supersymmetric action on the UV brane: this corresponds to the usual renormalization

procedure. Note also that the corresponding fermionic dimension, df = ds + 1/2 = 2 + c,

agrees both with [4] and [5].

For −1/2 < c < 1/2:

∆s ∼ (p)2c−1 +
a

b
(zUV )1−2c + . . . (3.8)

Now ds = 3/2+c = 2−νR < 2, and the local terms vanish in the conformal limit. Note that

in this range the dimension of the scalar is 1 < ds < 2: supersymmetry ensures a smooth

transition between dimensions larger and smaller than 2. This is very different from the

non-supersymmetric case where, in order to achieve ds < 2, it is necessary to change the

BCs on the UV and Legendre-transform the action [3]: the modified BC is generated by a

fine-tuned mass term on the UV-brane. The reason why a fine tuning is required for ds < 2

is that a mass term (a bilinear operator in O) becomes a relevant operator, and it has to be

tuned away to keep the conformal symmetry unbroken for ds < 2. In the supersymmetric

case, scalar mass terms are protected by the chiral symmetry of their fermion superpartners,

thus there is nothing special as ds goes below 2. In the 5D model, the transition through

ds = 2 is smooth as expected because supersymmetry takes care of generating the UV

boundary condition which is imposed by hand in the non-supersymmetric case. Note that

in this region we still agree with [4], but we disagree with the string formula for negative

c. As we will shortly see the formula in [5] does describe the other choice of BCs for c < 0.

Finally, for c < −1/2:

∆s ∼
(1 + . . . )

p2
+
a

b
(zUV )−2c−1p−2c−3 + . . . (3.9)

2Here we are assuming for simplicity that c± 1/2 is not an integer. In case of integers, logs arise from

the expansion of the Y Bessel functions.

– 8 –
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Note that in this case the propagator has a pole: this pole cannot be canceled by a local

term in the action on the UV brane, thus this signals the presence of an elementary field

coupled to the source. In the conformal limit, the non-local term vanishes. We therefore

interpret this case as a free field of canonical dimension ds = 1; in other words the CFT

operator is a free field that decouples (eg. this is what happens to the meson field operator

in SUSY QCD for a sufficiently small number of flavors [10]). This interpretation is new

compared to [4] and [5]. If we followed the analysis of the fermionic case in [4], we would

interpret the non-local term as the contribution of an operator of dimension ds = 1/2− c,
value which is in disagreement with eq. (3.1). The latter interpretation, moreover, relies

on the presence of a finite UV brane and brane localized degrees of freedom which couple

to the CFT3 and explain the presence of the pole. In the limit zUV → 0 that we are

considering, the source decouples from the second term of eq. (3.9) and we are left with the

massless pole. In this sense, the second term can be interpreted as a subleading correction.

For the other choice of BCs, it is enough to reverse the sign of c, therefore the result is

ds = 3/2 − c , df = 2− c for c < 1/2 , (3.10)

and free fields for c > 1/2. The formula df = 2 + |c| used in the string literature [5] only

works when c > 0 for the first choice of BCs, or c < 0 for the second choice of BCs. The

“string” formula is clearly incomplete since it does not admit free fermions.

In summary, we have found that for every choice of bulk mass c, there are 2 CFTs

depending on the BCs on the UV brane:

for c ≥ 1/2 ds = 3/2 + c , df = 2 + c or ds = 1 , df = 3/2

for −1/2 ≤ c ≤ 1/2 ds = 3/2 + c , df = 2 + c or ds = 3/2− c , df = 2− c
for c ≤ −1/2 ds = 1 , df = 3/2 or ds = 3/2− c , df = 2− c

(3.11)

In [3], the authors show how the AdS/CFT correspondence works for a scalar operator

of dimension 1 ≤ ds < 2: after modifying the UV boundary condition, a Legendre transfor-

mation is performed on the holographic boundary action which exchanges the sources and

the CFT operators (see also ref. [11]). Under such a Legendre transformation, the kinetic

operators in the holographic action are inverted. In the manifestly supersymmetric case

we are analyzing, if we apply the Legendre transformation we would then identify the CFT

correlators with the propagators of the sources in the following way

< O(−p)O(p) > = ∆s = (Σφ)−1 ∝ 1

p

fL

fR
, (3.12)

< FO(−p)FO(p) > = ∆F = (ΣF )−1 ∝ pfL

fR
, (3.13)

< ΘO(−p)ΘO(p) > = ∆f = (Σχ)−1 ∝ pµσµ

p

fL

fR
. (3.14)

These correlators correspond to the other choice of BCs Φc = Φ0. Thus the Legendre

transformation simply interchanges the two choices of BCs.

3We thank R. Contino for pointing this out to us.
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4 Vector supermultiplet

A vector multiplet in 5 dimensions can be described by a 4D vector multiplet V =

(Aµ, λ1,D) and a chiral multiplet χ = (Σ, λ2, F ). The action can be written as [6]:

S =

∫

d4x dz

{

1

4g2
5

∫

d2θWαW
α +

1

g2
5

∫

d4θ

(

∂zV −
z

R

χ+ χ∗

√
2

)2
}

. (4.1)

The EOMs for the auxiliary fields F and D yield:

F = 0 , D = −R
z

(

∂z −
2

z

)

Σ , (4.2)

while the scalar and fermionic EOMs contain bulk masses [7]m2
ΣR

2 = −4 andmλR=cλ = 1
2 .

Depending on the two possible BCs on the UV brane for the fermions, λ1 = 0 or

λ2 = 0, the fermionic operator will have dimension 3/2 or 5/2; while the scalar operator

has dimension 2. The first choice for the fermions correspond to the supersymmetric BCs

V = 0 and χ = χ0, does not lead to a vector superfield, but rather a chiral superfield with

scaling dimension 2. The other choice is χ = 0 and V = V0; in this case the CFT operators

are a vector and a fermion with canonical dimensions, i.e. one 4D vector supermultiplet.

5 Conclusions

By maintaining manifest N = 1 SUSY, we have seen that the usual calculations of operator

dimensions in AdS/CFT are simplified. Subtleties in the interpretation of scalar fields are

avoided since scalar BCs automatically arise in a supersymmetric fashion through the

auxiliary fields, rather than having to be imposed by hand. In this approach the behavior

of scalar operators with dimensions below 2 arises naturally and ds = 2 does not play

any special role. This is important because it clarifies how CFT operators transition

toward free fields.

We also showed that for every value of the mass c there are 2 different CFTs depending

of the choice of boundary condition on the UV brane. For a vector bulk field, the two choices

are clearly independent: one is a vector multiplet of canonical dimension 1, the other choice

lead to a chiral multiplet of dimension 2. For a bulk hypermultiplet, the two BCs are related

by a Legendre transformation. Once the BC is fixed, varying the bulk mass c the dimension

of the operator decreases to the canonical dimension (for c = 1/2 or c = −1/2); in the

remaining range (c > 1/2 or c < −1/2) the CFT operator reduces to a free field.

Moreover, supersymmetry relates the dimensions of the scalar and fermionic compo-

nents of the CFT operator, therefore the calculations already present in the literature for

non supersymmetric fields can be directly compared. As a result, we showed that the

formula for the fermion dimension df = 2 + |c| used in the string literature is incomplete.
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